
Excitonic and shallow-donor states in semiconducting quantum wells: a fractional-dimensional

space approach

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys.: Condens. Matter 9 8477

(http://iopscience.iop.org/0953-8984/9/40/014)

Download details:

IP Address: 171.66.16.209

The article was downloaded on 14/05/2010 at 10:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/9/40
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter9 (1997) 8477–8488. Printed in the UK PII: S0953-8984(97)84610-3

Excitonic and shallow-donor states in semiconducting
quantum wells: a fractional-dimensional space approach

M de Dios-Leyva†§, A Bruno-Alfonso†§, A Matos-Abiague‡ and
L E Oliveira†
† Instituto de F́ısica, Universidad Estadual de Campinas-Unicamp, CP 6165, Campinas-SP,
13083-970, Brazil
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Abstract. A systematic study of shallow-donor and excitonic states in semiconducting quantum
wells within a fractional-dimensional space approach is presented. In this scheme, the
Schr̈odinger equation is solved in a noninteger-dimensional space in which the interactions
are assumed to occur in an isotropic effective environment, and the fundamental quantity is
the parameterD, which defines the fractional dimension associated with the effective medium
and the degree of anisotropy of the interactions. The fractional dimensionality of the isotropic
effective space is derived via an unambiguous procedure in which one may obtain the exact
solution for the energies of the actual physical system under consideration. Explicit calculations
of the fractional-dimensional parameter are made in the case of shallow donors and excitons
in finite-barrier GaAs–(Ga, Al)As quantum wells, with impurity and exciton binding energies
found in good agreement with previous variational results and available experimental data.

1. Introduction

In the last few years, modern growth techniques such as molecular-beam epitaxy, chemical-
beam epitaxy, and metal–organic chemical vapour deposition have made possible the
realization of high-quality semiconducting heterostructures [1] consisting of layers of
different semiconductors with sharp interfaces and controlled layer thicknesses. The unique
physics character of the electronic states in semiconducting superlattices and heterostructures
and the wide range of potential device applications associated with these systems resulted
in a great deal of work devoted to the understanding of the nature of the electronic,
excitonic, and impurity states in semiconducting heterostructures. In particular, work on
impurity properties in quantum wells (QWs) was pioneered by Bastard [2], with several
other more detailed investigations performed by Greene and Bajaj [3], Mailhiotet al [4],
Tanakaet al [5], Fraizzoli et al [6], Masselink et al [7], Oliveira and Falicov [8], and
others, in which the energy spectrum of the ground state and low-lying excited states of
shallow impurities in GaAs–(Ga, Al)As QWs was studied taking into consideration the
finite size of the barrier potential, the influence of the effective-mass and dielectric constant
mismatches, nonparabolicity effects, etc. In general, these theoretical investigations are
based on a variational approach. Experimentally, various measurements of the properties
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of impurity states in GaAs–(Ga, Al)As QWs, under different physical conditions, have
been reported. Recent study [9] on the field contains a detailed list of theoretical and
experimental work on general properties of shallow impurities in QWs and semiconducting
heterostructures. Similar work, both theoretically [10–14] and experimental [15, 16], on
excitonic states in GaAs–(Ga, Al)As QWs has been reported. Bastardet al [10] and Greene
et al [11] performed variational calculations of the energy levels of Wannier–Mott excitons
in GaAs–(Ga, Al)As and InAs–GaSb heterostructures, whereas Pereiraet al [12] studied
the exciton binding energies in semiconductor superlattices (SLs) using an anisotropic-
effective-medium approach. An accurate theory of excitons in GaAs–(Ga, Al)As QWs
including valence-band mixing, Coulomb coupling between excitons belonging to different
subbands, nonparabolicity effects, and the difference in dielectric constants between well
and barrier materials was performed by Andreani and Pasquarello [13]. Leavitt and Little
[14] neglected valence-band mixings and presented a simple method for calculating exciton
binding energies in quantum-confined structures. A recent account of experimental work
on excitons may be found in the studies by Oelgartet al [15] and Voliotiset al [16].

Recently, the concept of fractional-dimensional space [17] has been successfully used in
the study of the excitonic properties and the optical spectra of anisotropic semiconducting
heterostructures [18]. A systematic work, within the fractional-dimensional space approach,
on the excitonic states and absorption spectra in GaAs–(Ga, Al)As QWs, quantum-well wires
(QWWs), SLs, and double QWs has been made by Mathieuet al [19–21], and by Zhao
et al [22]. In this scheme, the Schrödinger equation is solved in a noninteger-dimensional
space, where the interactions are assumed to occur in an isotropic effective environment,
i.e., in the fractional-dimensional model, the fundamental quantity is the parameterD which
defines the fractional dimension associated with the effective medium, and with the degree
of anisotropy of the interactions. However, up to now, all theoretical proposals have been
essentially based on anansatz for the fractional dimensionD. In this study, we propose
a systematic and unambiguous procedure to determine the fractional dimensionality of the
isotropic effective space used to model the actual system (a brief account of this work has
been reported elsewhere [23]).

2. Theoretical framework

We consider the problem of a shallow hydrogenic donor confined in a semiconducting
GaAs–(Ga, Al)As QW (growth axis along thez-direction), within the effective-mass and
non-degenerate-parabolic band approximations. The Hamiltonian for the donor is therefore
given by [23–26]

H = − h̄2

2m∗
∇2+ V (z)− e2

εr
(2.1)

wherem∗ is the conduction-band effective mass of the donor electron,ε is the dielectric
constant of the QW material (m∗ andε are assumed constant throughout the heterostructure
and equal to the GaAs bulk value),V (z) is the corresponding confining potential,r =√
x2+ y2+ (z− zi)2, and the donor is located at the positionzi . The eigenfunctions of

(2.1) may be taken asψE(r) = f (z)φE(r), wheref (z) is thez-part of then = 0 (k = 0)
electron-envelope wave function, for the QW in the absence of the Coulomb potential, and
find, after using (2.1),(

− h̄2

2m∗
∇2− e2

εr

)
φE − h̄2

2m∗
1

h(z+ zi)
dh(z+ zi)

dz

∂φE

∂z
= EφE (2.2)
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where

h(z) = f 2(z) (2.3)

z (and r) is now taken relative to the donor position, andE is the shallow-donor energy
(with respect to the bottom of then = 0 first conduction subband). (2.2) may be written,
in spherical coordinates, and takingm = 0 (m is the magnetic quantum number), as

(HD +W)φE = EφE (2.4)

where

HD = − h̄2

2m∗

[
1

rD−1

∂

∂r

(
rD−1 ∂

∂r

)
+ 1

r2 sinD−2(θ)

∂

∂θ

(
sinD−2(θ)

∂

∂θ

)]
− e2

εr
(2.5)

and

W = − h̄2

2m∗

[(
β

r
+ 1

h

∂h

∂r

)
∂

∂r
+ 1

r2

(
β cosθ

sinθ
+ 1

h

∂h

∂θ

)
∂

∂θ

]
(2.6)

with β = 3−D andh = h(r cosθ + zi). One should note that (2.4) isexact, and depends
on aD parameter which was introduced for convenience. Also, note that the Hamiltonian
(2.5) corresponds to them = 0 hydrogen Hamiltonian in a fractional-D-dimensional space,
a problem which may be solved analytically [17, 18]. If one denotes byφj andEj the
eigenfunctions and eigenvalues of (2.5), i.e.,

HDφj = Ejφj (2.7)

the donor energy (with respect to the bottom of then = 0 first conduction subband) may
be written, after some straightforward algebraic manipulation of (2.4) and (2.7), as

E = Ej +
(∫

hr2 sinθφ∗EWφj dr dθ

)(∫
hr2 sinθφ∗Eφj dr dθ

)−1

(2.8)

whereφE is the corresponding donor eigenfunction. Note that (2.8) is stillexact, and valid
for any valueof theD fractional-dimensional parameter, andholds for arbitrary pairsof
(φE,E) and(φj , Ej ).

If one now is interested in evaluating the donor binding energy, which is associated
with the ground stateE1s , one may choose theD parameter such that the second term in
the RHS of (2.8) is zero forφj chosen as the ground state associated with (2.7), so that
both ground states coincide. The condition forD is therefore that∫

hr2 sinθφ∗EWφj dr dθ = 0 (2.9)

with φE being theexact ground-state solution of (2.4). One should stress that the above
equation provides anexact expression for determining the dimension of theD-fractional-
dimensional space which would model the actual system, and which would give theexact
solution for the donor binding energy. Similar conditions could be obtained for theexact
D parameters which could be used for obtaining any energies of the excited states of the
actual physical system under consideration.

Of course, the exact solutionsφE of (2.4) are not known, and approximate values for
the fractional-dimensional parameterD may be obtained if one uses approximate solutions
for φE . The obvious simple choice is to takeφE = φj=0 (whereφj=0 is the 1s ground-state
solution [17, 18] of theD-dimensional Hamiltonian in (2.5)), use (2.9) to findD, and obtain
the energy states of the full problem under consideration by solving theD-dimensional
equivalent Hamiltonian. One would expect, of course, that this simple choice would give
an appropriate physical solution for the energy states, provided that the actual system is not
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Figure 1. Thickness dependence of the on-edge donor binding energies in GaAs–(Ga, Al)As
QWs. The curves in (a) are from Bastard [24], whereas the curves in (b) were calculated within
the fractional-dimensional approach. The curves labelled 1, 2, 3, and 4 correspond to conduction
barriers of 212 meV, 318 meV, 424 meV, and infinite barriers, respectively.

strongly anisotropic. If one considers the problem of a Wannier–Mott exciton confined in
a semiconducting QW, a similar condition forD may be found, and the excitonic energies
may be readily obtained (see the appendix).

3. Results and discussion

The solutions of (2.9) for theD fractional-dimensional parameter may be obtained, as
explained before, for the case of donors at the general positionzi in QWs, and also for
excitons in QWs. The binding energies may then be obtained through [17, 18]

EB = 4

(D − 1)2
R∗y (3.1)

whereR∗y is the effective Rydberg, either for donors or for excitons.
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Figure 2. Thickness dependence of the on-edge donor binding energies in GaAs–Ga1−xAlxAs
QWs for differentx alloy compositions. The curves in (a) are from Mailhiotet al [4], whereas
the curves in (b) were calculated within the fractional-dimensional approach. The curves labelled
1, 2, 3, and 4 correspond to conduction barriers of 106 meV, 212 meV, 318 meV, and 424 meV,
respectively.

Calculated results, within the fractional-dimensional approach, for the on-edge donor
binding energies are displayed in figures 1–3 as functions of the GaAs–(Ga, Al)As QW
width, and for different conduction-barrier potentials (or concentrations of Al) [27], and
compared with theoretical variational calculations by Bastard [24], Mailhiotet al [4], and
Oliveira [25] for on-edge donors. As already discussed by Oliveira [25], in the large-L

limit and infinite barrier potentials, theexactbinding energy of on-edge impurities isR∗y/4,
whereas for infinitely largeL and vanishingly small Al concentrations (or barrier potentials),
one should obtain the limiting value of 1R∗y for the on-edge binding energy, implying that,
for large values of the QW width, the on-edge binding energiesincreaseas the barrier
potential decreases, a prediction which contrasts with the theoretical behaviour obtained
by Bastard [24] and Mailhiotet al [4], and which is in agreement with the variational
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Figure 3. Thickness dependence of the on-edge donor binding energies in GaAs–Ga1−xAlxAs
QWs for differentx alloy compositions. The curves in (a) were obtained as in the work of
Oliveira [25] (using a constant screening), whereas the curves in (b) were calculated within
the fractional-dimensional approach. The curves labelled 1, 2, and 3 correspond to an Al
concentrationx = 0.15, 0.30, and 0.45, respectively.

calculation by Oliveira [25] and with the results of the present calculation in the fractional-
dimensional scheme. Moreover, in figure 3, it is apparent the overall quantitative agreement
between the on-edge binding energies calculated within a variational calculation [25] and via
the fractional-dimensional scheme, with the fractional dimensionD calculated as described
in the previous section.

In figure 4, we compare the theoretical results for the on-centre donor binding energies,
both in the case of the variational calculation [25] and the fractional-dimensional scheme.
For finite conduction-potential barriers, both theoretical calculations give theexactresults of
1R∗y for the on-centre donor binding energies, in the limiting cases of QW widthsL = 0, and
infinite, respectively, whereas for infinite barriers, one also recovers the exact limiting value
of 4R∗y for theL = 0 case. The overall agreement between both calculations is apparent for
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Figure 4. Thickness dependence of the on-centre donor binding energies in GaAs–Ga1−xAlxAs
QWs for differentx alloy compositions. The curves in (a) were obtained as in the work of
Oliveira [25] (using a constant screening), whereas the curves in (b) were calculated within the
fractional-dimensional approach. The curves labelled 1, 2, 3, and 4 correspond tox = 0.15,
0.30, 0.45, and infinite barriers, respectively.

QW widths larger than the donor effective Bohr radius (∼=100 Å), and results quantitatively
differ for small QW widths as the QW heterostructure is then strongly anisotropic, and most
certainly both methods (as well the effective-mass approximation itself) are not quantitatively
reliable. The donor binding energies in the fractional-dimensional scheme are shown in
figure 5, in the case of the impurity position varying within the GaAs–(Ga, Al)As QW, for
different QW widths, as compared with the results of variational calculations by Oliveira
[25] and Greene and Bajaj [26]. Again, the overall quantitative agreement is good, except
in the case of theL = 50 Å QW, in which the anisotropy is stronger.

The fractional-dimensional parametersD (cf (2.9)) used to obtain the theoretical binding
energies of figures 4(b) and 5(b) are displayed in figure 6, where one may note that the
appropriate physical dimensionD = 3 is recovered (see figure 6(a)) in the limiting cases
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Figure 5. Impurity-position dependence of the donor binding energies in GaAs–Ga1−xAlxAs
QWs for three different GaAs well thicknesses and for a conduction-barrier potential of 323 meV.
The dashed and solid curves in (a) are from Oliveira [25] (using a constant screening) and Greene
and Bajaj [26], respectively, whereas the curves in (b) are calculated within the fractional-
dimensional approach.

of QW widthsL = 0 and infinite, although for small values ofL theD parameter almost
goes to two (the two-dimensional behaviour appropriate for small values of the widthL),
and it recovers asL → 0 to the valueD = 3 as the donor wave function penetrates the
barrier and the system reduces to the appropriate three-dimensional barrier-bulk limit.

In the case of excitons, we used effective masses of 0.067m0 and 0.34m0, for the
electron and hole, which give a value of 4.85 meV for the exciton effective Rydberg
(we take the dielectric constantε0 = 12.53). For ideal infinite-barrier [23] QWs, we
obtain values for the fractional-dimensional parameterD of 2.18 and 2.55 for reducedL/a∗

well widths of 0.4 and 1.6, respectively, in very good agreement with the 2.20 and 2.49
results obtained by Lefebvreet al [21] via a comparison with a full calculation. For finite-
barrier GaAs–(Ga, Al)As QWs, our results for the 1s exciton binding energy, within the
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Figure 6. (a) Thickness dependence of the fractional-dimensional parameter corresponding
to on-centre donors in GaAs–Ga1−xAlxAs QWs for differentx alloy compositions (as in
figure 4(b)); (b) donor-position dependence of the fractional-dimensional parameter for three
different GaAs well thicknesses and for a conduction-barrier potential of 323 meV (as in
figure 5(b)).

fractional-dimensional scheme and for two values of the Al concentration, are presented in
figure 7, and are in very good agreement with a full calculation by Andreani and Pasquarello
[13]. Figure 8 presents a comparison between the exciton fractional-dimensional theoretical
binding energies and data from two recent experiments, where the good agreement with the
most recent experiment by Voliotiset al [16] is apparent.

4. Conclusions

Summing up, we have developed asystematic and unambiguous procedurefor determining
the fractional dimensionality of the isotropic effective space which would model and give
theexactsolution (8) for the energies of the actual physical system under consideration. Of
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Figure 7. Exciton binding energies for GaAs–Ga1−xAlxAs QWs as a function of the well
width and for x = 0.25 and 0.40. The dashed curves are the theoretical results of a full
calculation by Andreani and Pasquarello [13]. The solid curves were calculated within the
fractional-dimensional approach.

Figure 8. Exciton binding energies for GaAs–Ga1−xAlxAs QWs as a function of the well width
and forx = 0.29 and 0.32. The solid curves were calculated within the fractional-dimensional
approach. Some experimental results of Oelgartet al [15] and Voliotiset al [16] are also shown.

course, although explicit calculations of the fractional-dimensionalD parameter are made
only in the case of excitons and impurities in finite-barrier QWs (with good agreement for
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the exciton and impurity binding energies with previous variational results), our results may
be readily generalized for other physical systems. One must stress that the study of excitons
and impurities in QWs, QWWs, SLs, and semiconducting heterostructures in general, as
well as absorption, optical, and photoluminescence properties such as lineshapes, etc, are
readily obtained as straightforward applications of the above fractional-dimensional space
approach on the physical properties of heterostructures.
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Appendix

The problem of an exciton confined in a semiconducting QW, within the effective-mass and
parabolic band approximations, may be given by the Hamiltonian

H = − h̄2

2me
∇2
e −

h̄2

2mh
∇2
h + Ve(ze)+ Vh(zh)−

e2

ε|re − rh| (A.1)

whereme and mh are the effective masses of the electron and hole, respectively, and
Ve and Vh are the confining potentials. The eigenfunction of (A.1) may be taken as
(eiK·R/

√
S)ψE(ρ, ze, zh), whereS is the transversal area of the QW,K is the exciton

in-plane wavevector,ρ is thexy relative coordinate, andR is the in-plane coordinate of the
exciton centre of mass. One may writeψE(ρ, ze, zh) = fe(ze)fh(zh)φE(ρ, ze, zh), where
fe andfh are thez-part of the electron and hole envelope wave functions, respectively, in
the absence of the Coulomb potential, and find, after using (A.1) and assuming the relative
motion of the carriers and that of the centre of mass are independent,(
− h̄

2

2µ
∇2− e2

εr

)
φE − h̄2

2µ

h′(z)
h(z)

∂φE

∂z
= EφE h(z) =

∫ ∞
−∞

f 2
e (ξ)f

2
h (ξ − z) dξ (A.2)

whereµ is the reduced mass of the exciton,ε is the dielectric constant of the QW material,
z = ze − zh, andE is the exciton energy with respect toE0 = Eg + Ev,n=1 + Ec,n=1, with
Eg being the GaAs bulk gap, andEv,n=1 (Ec,n=1) the confining (positive) energy of the top
(bottom) of the first valence (conduction) subband. One may write (A.2), form = 0 and in
spherical coordinates, as(HD +W)φ = Eφ, whereHD andW are given by (2.5) and (2.6)
with m∗ substituted byµ. If one denotes byφj andEj the eigenfunctions and eigenvalues
of HD, the exciton energy may be written in the form of (2.8), and one readily recovers
(2.9). For evaluating the exciton ground-state binding energy, the fractional-dimensional
parameterD may then be obtained if one takesφE as the 1s exciton ground-state solution
of theD-dimensional Hamiltonian, and solves (2.9) forD.
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